赵老师教案网 >地图 >教学设计 >

鸽巢问题教案第二课时

鸽巢问题教案第二课时

时间:2025-12-15 赵老师教案网

鸽巢问题教案第二课时三篇。

作为一名敬业的人民教师,编写教案是必不可少的,教案有助于学生系统性地理解和掌握知识。以下是我们为大家整理的人教版《鸽巢问题》第二课时教案,希望能对你有所帮助。

鸽巢问题教案第二课时

✹ 鸽巢问题教案第二课时

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

(二)核心能力

经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(三)学习目标

1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(四)学习重点

了解简单的鸽巢问题,理解“总有”和“至少”的含义。

(五)学习难点

运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.谈话导入

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

2.问题探究

(1)呈现问题,引出探究

出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

师:“总有”是什么意思?“至少”有2支是什么意思?

学生自由发言。

预设:一定有

不少于两只,可能是2支,也可能是多于2支。

就是不能少于2支。

(2)体验探究,建立模型

师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

小组活动:学生思考,摆放。

①枚举法

师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

(不一定,也可能放在其它笔筒里。)

师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

师:这种放法可以记作(3,1,0)

师:这3支铅笔一定要放在第一个笔筒里吗?

(不一定)

师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

预设4:还可以(2,1,1)

或者(1,1,2)、(1,2,1)

师:还有其它的放法吗?

(没有了)

师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

师:这几种放法如果用一句话概括可以怎样说?

(装得最多的笔筒里至少装2支。)

师:装得最多的那个笔筒一定是第一个笔筒吗?

(不一定,哪个笔筒都有可能。)

【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

②假设法

师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

师:“平均放”是什么意思?

预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

师:为什么要先平均分?

学生自由发言。

引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

(3)提升思维,建立模型

①加深感悟

师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:把7支笔放进6个笔筒里呢?还用摆吗?

学生自由发言。

师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

师:你发现了什么?

预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:你的发现和他一样吗?

学生自由发言。

师:你们太了不起了!

师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

练一练:

师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

师:说说你的想法。

师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

介绍狄利克雷:

师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

②建立模型

出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

学生独立思考、讨论后汇报:

师:怎样用算式表示我们的想法呢?生答,板书如下。

7÷3=2本……1本(2+1=3)

师:如果有10本书会怎么样能?会用算式表示吗?写下来。

出示:

把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

10÷3=3本……1本(3+1=4)

师:观察板书你有什么发现?

预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

学生讨论,汇报:

8÷3=2……22+1=3

8÷3=2……22+2=4

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

预设:我认为根“商”有关,只要用“商+1”就可以得到。

师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

3.巩固练习

(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

(2)第69页的做一做第1、2题。

4.全课总结

师:通过这节的学习,你有什么收获?

小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

(三)课时作业

1.一个小组共有13名同学,其中至少有几名同学同一个月出生?

答案:2名。

解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

答案:8名。

解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

第二课时鸽巢原理

中原区汝河新区小学师芳

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

(二)核心能力

在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

(三)学习目标

1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

(四)学习重点

引导学生把具体问题转化为“抽屉原理”。

(五)学习难点

找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.情境导入

师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

师:神奇吧!你们想不想表演一个呢?

师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

2.探究新知

(1)学习例3

①猜想

出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

预设:2个、3个、5个…

②验证

师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

可以用表格进行整理,课件出示空白表格:

学生独立思考填表,小组交流。

全班汇报。

汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

课件汇总,思考:从这里你能发现什么?

教师:通过验证,说说你们得出什么结论。

小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

③小结

师:为什么球的个数一定要比抽屉数多?而且是多1呢?

预设:球有两种颜色,就是两个抽屉,从最不利的.情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

(2)引导学生把具体问题转化成“抽屉原理”。

师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

思考:①摸球问题与“抽屉原理”有怎样的联系?

②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

3.巩固练习

(1)完成教材第70页“做一做”第1题。

(2)完成教材第70页“做一做”第2题。

4.课堂总结

师:这节课你学到了什么知识?谈谈你的收获和体验。

(三)课时作业

1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

答案:5只。

解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

答案:16条。

解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

✹ 鸽巢问题教案第二课时

教学目标:

1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

教学重点:

经历“鸽巢原理”的探究过程,理解鸽巢原理。

教学难点:

理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

教学准备:

多媒体课件、铅笔、纸杯、合作探究作业纸。

教学过程:

一、 唤起与生成

1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

二、探究与解决

(一)、小组探究:4放3的简单鸽巢问题

1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

2、审 题:

①读题。

②从题目上你知道了什么?证明什么?

(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

“不管怎么放”:就是随便放、任意放。

“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

3、探 究:

①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

②活 动:小组活动,四人小组。

听要求!

活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

听明白了吗?开始!

3、反 馈:汇报结果

同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

追 问:谁还有疑问或补充?

预设:说一说你比他多了哪一种放法?

(2,1,1)和(1,1,2)是一种方法吗?为什么?)

只是位置不同,方法相同

5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

(1)逐一验证:

第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

符合总有一个笔筒里至少有2支铅笔。

第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

符合条件的那个笔筒在三个笔筒中都是最多的。

(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)自主探究:5放4的简单鸽巢原理

1、过 渡:依此推想下去

2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

4、验 证:你们的猜测对吗?让我们来验证一下。

活动要求:

(1)思考有几种摆法?记录下来。

(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

好,开始。(教师参与其中)。

5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

分别是:5000 、4100、 3200、 3110 、2200、2111

(课件同步播放)

预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

(三)、探究鸽巢原理算式

1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

(好麻烦,是啊, 想想都觉得麻烦!)

2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

3、平均分:为什么这样分呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共只有4支,平均分,每个笔筒只能分到1支。

师:为什么一开始就要去平均分呢?

生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

生:平均分已经使每个笔筒中的.笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

师:看来,平均分是保证“至少”数的关键。

4、列式:

①你能用算式表示吗?

4÷3=1……1 1+1=2

②讲讲算式含义。

a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

b、真棒!讲给你的同桌听。

5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。

5÷4=1……1 1+1=2

说说算式的意思。

a、同桌齐说。

b、谁来说一说?

师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

(四)探究稍复杂的鸽巢问题

1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

2、题组(开火车,口答结果并口述算式)

(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

7÷5=1…… 2 1+2=3?

7÷5=1…… 2 1+1=2

出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

你认为哪种结果正确?为什么?

质 疑:为什么第二次还要平均分?(保证“至少”)

把铅笔平均分才是解决问题的关键啊。

(3)把笔的数量进一步增加:

8支铅笔放5个笔筒里,至少数是多少?

8÷5=1……3 1+1=2

(4)9支铅笔放5个笔筒里,至少数是多少?

9÷5=1……4 1+1=2

(5)好,再增加一支铅笔?至少数是多少?

还用加吗?为什么 10÷5=2 正好分完, 至少数是商

(6)好再增加一支铅笔,,你来说

11÷5=2……1 2+1=3 3个

①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

③铅笔的支数到多少支的时候,至少数就变成了4了呢?

(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6

(8)算的这么快,你一定有什么窍门?(比比至少数和商)

(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

3、观察算式,同桌讨论,发现规律。

铅笔数÷笔筒数=商……余数” “至少数=商+1”

你和他们的发现相同吗?出示:商+1

4、质疑:和余数有没有关系?

(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

(五)归纳概括鸽巢原理

1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

100÷30=3…… 10 3+1=4 至少数是4个

(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

2、推广:

刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

(1)书本放进抽屉

把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

8÷3=2……2? 2+1=3

(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

(2)鸽子飞进鸽巢

11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

11÷4=2……3? 2+1=3

答:至少有 3只鸽子飞进同一只鸽笼。

(3)车辆过高速路收费口(图)

(4)抢凳子

书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

3、建立模型:鸽巢原理:

同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

有信心用我们发现的原理继续接受挑战吗?

3、巩固与应用

那我们回头看看课前小魔术,你明白它的秘密了吗?

1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

正确应用鸽巢原理是表演成功的秘密武器!

2、飞镖运动

同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

在练习本上算一算,讲给你的同桌听听。

谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)

41÷5=8……1? 8+1=9

在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

3、我们六年级共有367名学生,其中六(2班)有49名学生。

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人的生日是在同一个月。

他们说的对吗?为什么?

同桌讨论一下。

谁来说说你们的想法?

1、367人相当于鸽子,365、或366天相当于鸽巢......

2、49人相当于鸽子,12个月相当于鸽巢......)

真理是越辩越明!

3、星座测试命运

说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

你用星座测试过命运吗?你相信星座测试的命运吗?

我们用鸽巢原理来说说你的想法。

全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

4、柯南破案:

“鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

大爷:是什么手机号呢?这么贵?

年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!

老大爷:哦!

听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

4、 回顾与整理。

这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

下 课!

✹ 鸽巢问题教案第二课时

教学内容:

教科书第68页例1。

教学目标:

1、使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。

2、通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。

教学重点:

经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

教学难点:

理解“抽屉原理”,并对一些简单的实际问题加以“模型化”。

教学模式:

学、探、练、展

教学准备:

多媒体课件一套

教学过程:

一、游戏导入

1.师生玩“扑克牌魔术”游戏。

(1)教师介绍:一副牌,取出大小王,还剩下52张牌,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

(2)玩游戏,组织验证。

通过玩游戏验证,引导学生体会到:不管怎么抽,总有两张牌是同花色的。

2.导入新课。

刚才这个游戏当中,蕴含着一个数学问题,这节课我们就一起来研究这个有趣的问题。

二、呈现问题,探究新知

课件呈现:例1.把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。为什么呢?

课件出示自学提示:

(1)“总有”和“至少”是什么意思?

(2)把4支铅笔放进3个笔筒中,可以怎么放?有几种

不同的放法?(请大家用摆一摆、画一画、写一写等方法把自己的想法表示出来。)

(3)把4支铅笔放进3个笔筒中,不管怎么放总有一个笔筒至少放进xxx支铅笔?

(一)自主探究,初步感知

1、学生小组合作探究。

2、反馈交流。

(1)枚举法。

(2)数的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

(3)假设法。

师:除了像这样把所有可能的情况都列举出来,还有没有别的

方法也可以证明这句话是正确的呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还剩1支。这时无论放到哪个笔筒,那个笔筒中就有2支了。

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共有4支,平均分,每个笔筒只能分到1支。

师:你为什么一开始就平均分呢?(板书:平均分)

生:平均分就可以使每个笔筒里的笔尽可能少一点。

师:我明白了。但是这样只能证明总有一个笔筒中肯定有2支笔,怎么能证明至少有2支呢?

生:平均分已经使每个笔筒里的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

(4)确认结论。

师:到现在为止,我们可以得出什么结论?

生(齐):把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)提升思维,构建模型

师:(口述)那要是

(1)把5支铅笔放进4个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

(2)把6支铅笔放进5个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

(3)10支铅笔放进9个笔筒中呢?100支铅笔放进99个笔筒中

2.建立模型。

师:通过刚才的分析,你有什么发现?

生:只要铅笔的'数量比笔筒的数量多1,那么总有一个笔筒至少要放进2支笔。

师:对。铅笔放进笔筒我们会解释了,那么有关鸽子飞入鸽巢的问题,大家会解释吗?(课件出示)

师:以上这些问题有什么相同之处呢?

生:其实都是一样的,鸽巢就相当于笔筒,鸽子就相当于铅笔。

师:像这样的数学问题,我们就叫做“鸽巢问题”或“抽屉问题”,它们里面蕴含的这种数学原理,我们就叫做“鸽巢问题”或“抽屉问题”。(揭题)

三、基本练习。

四、拓展提升。

五、课堂小结。

六、作业布置。

完成课本第71页,练习十三,第1题。

本文来源:https://www.zjan56.com/jiaoxuesheji/159000.html