人教数学五年级教案(经典9篇)。
作为一名优秀的教育工作者,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。来参考自己需要的教案吧!以下是小编为大家整理的人教版数学五年级上册《用字母表示数》教案,欢迎阅读,希望大家能够喜欢。
人教数学五年级教案 篇1
教学目标:
1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,让学生学会在计算公式中求各个量的方法。
3.让学生初步体会利用等量关系分析问题的优越性。
教学重点:
1.让学生学习在计算公式中求各个量的方法。
2.让学生体会利用等量关系分析问题的优越性。
教具准备:
配套教与学的平台
教学过程:
复习引入
1.解方程
8x ÷ 2 =28 7(x+3)÷ 2 =28
2(x +17 )=40 6(5+x)÷ 2 =36
2.任意选择一题进行检验。
3.复习以前学过的公式:C=2(a+b)
C=4a S=ab S=ah÷2 S=(a+b)h÷2 ……
人教数学五年级教案 篇2
教学目标:
1、经历知识的形成过程,理解约分的含义。
2、探索并掌握约分的方法,能正确地进行约分。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点:
理解约分的含义。
教学难点:
能正确地进行约分。
教学准备:
卡纸、彩笔。
教学活动:
一、创设情境,导入新课。
师:“美味蛋糕店”的师傅招收学员时考了这样一道题目:请你在最快的时间里切出一块蛋糕的8/24,要求切得比较均匀。今天老师也想拿这道题目考考你们,看看哪些同学们能被选上。
二、实践操作,探究新知。
1.引导发现,明确概念。
师:请同学们拿出一张卡纸。表示出这张卡纸的8/24,想一想怎样做?
(学生动手操作,展示成果并解说)
师:从上面这些学生的发言中你能得到什么结论?
让生通过用分数表示阴影部分找出一组相等的分数:
8/24=4/12=2/6=1/3
教师根据学生汇报,有选择地板书。
师:现在请同学们观察黑板上的三个式子,你发现了什么?引导学生回答出:
(1)它们的分子和分母都同时除以了一个相同的数,所以这些分数的大小都不变。
(2)是同时除以它们的公因数。
师:说得非常准确,这里的除数都是什么数?
生:分子和分母的公因数。
引导学生归纳出:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫作约分。
师:还有什么发现?
引导学生说出:约分后这些分数的`分子和分母都越来越小,但分数值都相等。最后一个式子的得数是1/3不能“再往下除了”。
师肯定:准确地说1/3不能再约分了。谁知道,为什么不能“再约分了”?
引生答出:因为1和3没有公因数。所以不能“再约分了”。
总结并揭示:像1/3这样的分数,当分子和分母没有公因数的分数,我们把它叫做最简分数。约分的最后结果应该是:最简分数。
师:谁能举个例子来说明,什么是最简分数?
生:(举例说明)。
2.探索约分的方法。
请两个同学来介绍一下约分的过程。
师:谁能完整的说一说约分的方法和应注意的问题。
3.师:通过上面的学习我们知道了,要在最快的时间里切出一个蛋糕的8/24,其实也就是切出这块蛋糕的1/3,这样也就顺利地完成了题目要求!
三、课堂练习,巩固应用。
教材第48页“练一练”。
(1)学生试做。(2)集体交流。
四、畅谈收获,全课总结。
通过本课的学习,你有什么收获?
教学反思:
1.创设了生动有趣的情境,调动了学生的学习积极性,激发了学生强烈的求知欲。
2.在学习约分之前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,因此合理的知识迁移,较好地帮助了学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。
3.为学生提供了充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,教学的重点和难点都是在学生的发现、探究、交流中解决,使课堂充满了活力。
人教数学五年级教案 篇3
设计说明
1、加强动手操作训练,促进学生的思维。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。
2、自主探索,体会优化思想。
本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。
课前准备
教师准备ppt课件天平药瓶
学生准备天平
教学过程
情境导入,激发兴趣
1、你们每天上学通常要走哪条路?为什么要选择这条路?
(生自主回答)
2、你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)
师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)
师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。
设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的`具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。
实践操作,自主探究
1、提出探究要求。
师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。
2、动手操作,汇报方法。
学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)
3、总结归纳记录的方法。
组织学生把用天平称的过程用图表记录下来。
合作交流,研究探讨
师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?
理解题意,动手操作。
(1)先让学生读题,说说“至少”的含义。
(2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。
(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)
人教数学五年级教案 篇4
教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
教学重点:
理解并掌握方程的意义。
教学难点:
会列方程表示数量关系。
教学过程:
一、教学例1
1.出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
2.引导
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的.作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
二、教学例2
1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
三、完成练一练
1.下面的式子哪些是等式?哪些是方程?
2.将每个算式中用图形表示的未知数改写成字母。
四、巩固练习
1.完成练习一第1题
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
2.完成练习一第2题
五、小结
今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?
六、作业
完成补充习题
板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式叫做方程
人教数学五年级教案 篇5
一、教学目标
1、知识与技能
在现实情境中理解含有字母的式子所表示的意义,会用含有字母的式子表示数量和简单的数量关系,初步了解含有字母的式子中省略乘号的书写方法;能正确地根据字母的取值求含有字母式子的值。
2、过程与方法
在经历把实际问题用含有字母的式子进行表达的抽象过程中,感受用字母表示数的优越性,发展符号感,同时渗透不完全归纳思想,提高抽象概括能力。
3、情感态度和价值观
渗透函数思想,感受变量间的对应关系和相互依存关系,能根据实际情况确定字母的.取值范围。
二、教学重难点
教学重点:用含有字母的式子表示数量和数量关系,能正确地求含有字母式子的值。
教学难点:理解含有字母式子的双重含义、感受用字母表示数的优越性。
三、教学方法
讲授法、讨论法等
四、教学过程
(一)古诗激趣,导入新课
1.古诗激趣。
通过宋代诗人王安石的《梅花》中的“墙角数枝梅”这句话中的数来探讨用数学的角度精炼表示出不确定的数。
(二)新课讲授
1.教学例1,引导探究。
(1)出示情境。
(2)引导感受。
①从图中你知道了什么?(爸爸比小红大30岁)
②当小红1岁时,爸爸多少岁?你能用一个式子表示吗?
③当小红2岁时呢?3岁时呢?
④你还能接着这样用式子表示下去吗?请在草稿本上写一写。你在写这么多式子时,有什么感受呢?这样的式子能写完吗?
(3)观察思考。
①仔细观察这些式子,你有什么发现?什么变了?什么不变?为什么不变?
②上面这些式子每个只能表示某一年爸爸的年龄,那我们能不能想个好办法,只用一个式子就简明地表示出任何一年爸爸的年龄呢?
(4)自主尝试。
(5)交流优化。
(6)渗透范围。
①当a变大时,a+30有什么变化?
②在a+30这个式子中,a还可以是几呢?a能是200吗?出示小资料:世界上最长寿的人。
③小结:看来字母可以表示的数量要由实际情况来决定。
(三)巩固练习,拓展深化
1.组织学生用含字母的式子表示出成年男子的标准体重。
2.组织学生用含字母的式子表示出校车上下来5个学生后,学生的数量
(四)课堂总结,布置作业
1.回顾全课。
(1)今天学习了什么内容?什么情况下可以用字母表示数?
(2)你认为用字母表示数有什么好处?能说说你的收获吗?
2.扩展应用。
组织学生交流生活中收集的信息,小组讨论:哪些量是固定不变的?哪些量是可变的?并将可变的量用字母表示。
人教数学五年级教案 篇6
教学目标 :
1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;
2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;
3、培养学生的观察、概括能力。 教学
教学重点:
掌握正方体的特征。
教学难点:
正方体与长方体的比较。
课前准备:
教法学法 实践法、讨论法
教学过程:
一、复习导入
1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?
2、口答:说出每个图形的长、宽、高各是多少。
3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。
(揭示课题:正方体的认识)
二、概括特征
1、以小组为单位发学具。
2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。
3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。
4、汇报交流
(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。
(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的`12条棱长度都相等。
(3)让生说说有几个顶点?你是怎么验证的?
5、提问:谁能完整地说一说正方体有什么样的特征?
多指名几个同学说特征。
6、结合直观图小结:正方体6个面是完全相同的正方形,它有12
条棱,每条棱的长度都相等。它还有8个顶点。
7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?
8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。
三、观察比较,体会异同
1、提问:长方体和正方体有哪些相同点,有哪些不同点?
2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。
3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。
4、根据比较结果,想一想正方体和长方体有什么关系?
不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。
练习 完成P20做一做
总结 今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?
作业布置
板书设计 :
正方体的认识
6个面 (完全相同,都是正方形)
立体图形正方体 12条棱 (长度相等)
8个顶点
人教数学五年级教案 篇7
教学内容
解方程:教材P69例4、例5。
教学目标
1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。
2.进一步掌握解方程的书写格式和写法。
3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点
理解在解方程过程中,把一个式子看作一个整体。
教学难点
理解解方程的.方法。
教学过程
一、导入新课
我们上节课学习了解方程,这节课我们来继续学习。
二、新课教学
1.教学例4。
师:(出示教材第69页例4情境图)你看到了什么?
生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。
师:你能根据图列一个方程吗?
生:3x+4=40。
师:你是怎么想的?
生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。
师:说得好,你能解这个方程吗?
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
生:先算出3个铅笔盒一共多少支,再加上外面的4支。
师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。
让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。
2.教学例5。
师:(出示教材第69页例5)你能够解这个方程吗?
生1:我们可以参照例4的方法,先把x-16看作一个整体。
学生解方程得x=20。
生2:我们也可以用运算定律来解。
师:2x-32=8运用了什么运算定律?
生:运用了乘法分配律。然后把2x
看作一个整体。
学生解方程得x=20。
师:你的解法正确吗?你如何检验方程是否正确?
生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。
三、巩固练习
教材第69页“做一做”第1、2题。
第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。
这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
四、课堂小结
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、布置作业
教材第71页“练习十五”第6、8、9.题。
人教数学五年级教案 篇8
教学目标:
(1)使学生学会用含字母的式子表示数量,培养学生抽象概括的能力
(2)理解用字母表示数的意义,感悟身边处处有数学,初步体会数学的价值
(3)初步学会从数学的角度提出问题,理解问题,并能综合运用所学的知识和技能解决问题
重点:会用含字母的式子表示数
难点:理解用字母表示数的意义
教学过程:
一、迁移引入、揭示新课
师:今天我们要上一节与字母有关的数学课,生活中你见到过字母吗?(生举例、交流)
生1:KFC,肯得基的标志。 生2:GPS,全球定位系统。
生3:DNA,人体基因密码。 生4:USA,美国的简称。
生5:……
师:同学们的知识真丰富,数学上也经常用到字母,数学上的字母可以表示什么?前面我们已经学过,用含字母的式子可以表示运算定律、计算公式和一些常见的数量关系。那么含字母的式子还能表示什么呢?又该怎么表示呢?今天我们就来研究。
(新课前,师生通过交流生活中见到或了解的一些字母及所代表的含义,使原本高度抽象的字母变得是那么具体并富有情趣,再以此迁移,引入数学中的字母,这就大大激发了学生学习“用字母表示数”的浓厚兴趣。)
二、设疑激趣、展开新课
1、创设情境、探究新知
⑴猜老师的年龄
师:同学们,下面我们来做一个调查。指名几生,问:你几岁了?
生1:我11岁。
生2:我也11岁。……
师:11岁的同学请举手,看来我们班大部分同学都是11岁(板书:同学的岁数11)
师:同学们,杨老师教你们好几年了,你们知道老师今年多大吗?想知道吗?先猜猜看。(板书:老师的岁数)
指名几生猜一猜后,师出示“老师比同学大19岁”。
师问:你们现在知道老师多大了吗?怎样算的?(生说师板书:11+19)
⑵畅想师生的年龄。
师:看来只要知道你们的年龄,根据老师比你们大19岁这一关系就能算出老师的年龄了。你们已经知道杨老师现在的年龄了,还想知道其他时候杨老师的岁数吗?下面让我们进入时空隧道,同学们可以回忆从前,也可以展望美好的未来,请推算推算,当你到什么时候,老师多大岁数了。把你的想法写下来,小组内交流一下。
生大组汇报,师板书:
同学的年龄 老师的年龄
小学毕业 12 12+19
上一年级 6 6+19
初中毕业 15 15+19
大学毕业 23 23+19
┇ ┇ ┇
⑶用字母表示师生的年龄。
师:这么多同学都想说,如果老师把你们每个人的想法都写出来,你有什么感觉?
生1:太麻烦。 生2:写不完。
师:能不能想个办法,用一个式子概括所有同学的想法,表示出杨老师任意一年的年龄呢?
生小组讨论、汇报,师板书:
① a+19 ②a+19=b ③a+b=c
⑷讨论含字母式子的合理性及优点
师:同学们用了三个不同的式子表示老师的年龄,哪个式子更合理、更简洁呢?
组织学生讨论得出:
同学们的.岁数是变化的,所以用a表示同学们的岁数,而老师比同学们大19岁是不变的,所以可以不用别的字母表示老师的岁数,用a+19就可以了。
追问:a+19表示的是你们几岁时老师的年龄呢?(生:任一年年龄的时候)
a+19表示的年龄与上面这样一个一个举例子比较有什么好处呢?
生1:简便了。
生2:把所有人的想法都概括了。
生3:还能看清老师与同学的岁数关系。
⑸讨论字母a的取值
师:这里的a可以表示哪些数呢?表示500行不行?
生:不行,因为人不可能活到500岁。
师小结:看来用含字母的式子表示生活中的数量时,字母所取的数要符合生活实际。
(教师现场采集信息,得出“同学们的年龄和师生的年龄差”,让学生推算出老师现在的年龄。然后再展开想象的翅膀,回忆过去、展望未来,“当同学们多大时,老师那时的年龄”。通过这一生活中现实场景的创设,营造出了学生争先恐后,急需一吐为快的生动活泼的课堂气氛。当老师将几位同学的想法写下后,便问:每位同学可能都有好多个想法,即使每人说一个,老师若都写下来,你们会感觉怎样?——太麻烦,能不能用一个式子就把所有同学的想法都概括进来呢?此时老师已成功地为学生创设了一种与原有认知的冲突和急需一种新认知的心理需要。在此基础上,再放手让学生小组内合作、讨论,共同探究,显得水到渠成、确有必要。)
2、联系实际、解决问题
⑴媒体出示:学校“书香超市”场景。
⑵提出问题:“童话大王比小哥白尼少30本”,你能用含字母的式子表示这两种书的本数吗?
⑶生讨论、汇报,师板书:
童话大王 小哥白尼
a a+30
b-30 b
⑷讨论b的取值
⑸算一算:童话大王有58本,小哥白尼有多少本?
如果小哥白尼有90本,童话大王有多少本呢?
3、比较归纳,揭示课题
师:用含字母的式子可以表示人的年龄、书的本数等等这样的数量。这就是今天这节课我们要研究的用含字母的式子表示数量。(板书课题:用字母表示数)
三、分层练习、巩固新课
师:生活中许多数量都可以用含字母的式子来表示。下面我们来看一些例子:
1、在括号内填上合适的式子
⑴ 小敏原有a本故事书,捐献给灾区小朋友5本后,还剩( )本。
⑵ 一辆公共汽车每小时行÷千米,3小时共行( )千米。
⑶ 一种糖果的单价是每千克a元,买14千克需( )元,买b千克需( )元。
⑷ 一种电视机40台的总价是c元,那么一台电视机的单价是( )元。
2、解决生活中的数学问题
⑴ 出示图文结合题:
① 101路无人售票车上有乘客56人,到中华门车站下车a人,又有b人上车,现在车上有( )人。
② 书香超市里有n个书架,每个书架放b本书,共有图书( )本。其中故事书有b本,科幻书比故事书的2倍多17本,科幻书有( )本。
③ 双休日,四(3)班的男生修补图书m本,女生修补图书n本,全班平均每天修补图书( )本。
⑵说说下面每个式子的含义
① 老师家上个月用水a吨,这个月比上个月节约用水b吨,a-b表示什么?
② 娟娟家平均每月用电a度,12a表示什么?
③ 学校买来9个足球,每个a元;又买来b个篮球,每个25元。
9a表示什么? 25b表示什么? 9a+25b表示什么?
四、总结全课、完善建构
师:通过刚才的学习我们知道用含字母的式子,还可以表示生活中许许多多的数量,那么用含字母的式子表示数量有什
么好处?又有什么需要注意的呢?
指名生说一说。
五、趣味应用、综合提高。
师:出示儿歌,生齐读:
一只青蛙一张嘴,两只眼睛四条腿,扑通一声跳下水。
二只青蛙二张嘴,四只眼睛八条腿,扑通两声跳下水。
三只青蛙三张嘴,六只眼睛十二条腿,扑通三声跳下水。
……
师:能念完吗?有什么办法能念完?
1、小组讨论、汇报,师板书:
⑴ x、x、x、x、x ⑵ a、b、c、d、e
⑶ a、a、b、c、a ⑷ a、a、2a、4a、a
2、再次讨论:哪种方法最合理,为什么?
3、齐读儿歌,宣布下课。
“a只青蛙a张嘴,2a只眼睛4a条腿,扑通a声跳下水”。
(“意犹末尽,乐此不疲”是我们追求的最佳教学效果。课尾,教师别具匠心地设计了一则“读儿歌”的游戏,既深化、巩固了新知,也让学生真切地感受到:生活中处处有数学,数学并不是想象地那么枯燥乏味,而是充满情趣,富有意义的。)
【总评】:
“理念新,双基实”是本节课非常突出的优点,具体表现在:
1、紧密联系生活实际。新课程标准明确提出:数学教学活动必须建立在学生的认识发展水平和已有的知识经验基础之上。强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度和价值观等多方面得到了发展。本节课教师始终围绕学生的生活实际,发掘学生身边的数学素材,如:师生的年龄、公共汽车上的数学、书香超市里的数学、儿歌等等,以此贯穿全课,使学生充分经历了知识的发生、形成、发展和应用的全过程,感受到生活中处处有数学,体验到数学的魅力与价值。
2、重视学生自主与合作、讨论与交流式的学习。学生学习数学既是一个生动活泼的、主动的和富有个性的过程,也是一个经验共享、相互启智的过程。本节课教师放手让学生在自主探究的同时,为学生创设了多次合作、讨论和交流的机会。如:在学生提出用a+19、a+19=b、a+b=c表示老师年龄的式子中,哪个更简洁更合理;当a表示人的年龄、乘客人数等数量时,可以取哪些数等等,以此由学生展开讨论,学生在讨论中进行思维的碰撞和整合,在整合的过程中使思维变得更加缜密与深刻。
3、练习设计巧妙,训练扎实。新一轮课程改革,并不意味对传统的全盘否定,而是要进行合理的扬与弃。本节课中杨老师很好地继承和发扬了我们教学中传统的做法,即“双基实,变式精”,充分做到了“分层练习有保证、变式练习有体现”。在练习与应用中,教师精心设计了一系列有层次、有坡度、有新意的习题,并且都是以生活为素材,源于生活、高于生活(提炼过的)、服务于生活,使学生在解决一个个现实问题的同时,“双基”得到了进一步的夯实与提高,也为后续学习打下了坚实的基础。
全课教学设计结构严谨、条理清楚、层层深入。既重视了知识本身的建构,又重视了课堂结构的建构,充分体现了学生从“问题情境—建立数学模型—解释、应用与拓展”的意义建构的学习过程,是一节“新、趣、活、实”的好课。
人教数学五年级教案 篇9
教材分析:
1.“找最小公倍数”是北师大版五年级数学上册教材第三单元的内容,本册教材对找公因数,最小公倍数的知识与约分、通分的知识进行了整合。
2.根据课标要求,本册教材对“找最小公倍数”的要求适当地限制,求最小公倍数把两个数限制在100以等。
3.“找最小公倍数”是学习通分的基础,同时也是进一步学习分数四则计算,运用分数知识解决实际问题的基础,是分数教学的重点。
学情分析:
学生情况分析:在学习“找最小公倍数”之前,学生已掌握“找公因数”的方法和“找一个数的倍数”的方法,为学习“找最小公倍数”作好了铺垫。
学生认知发展分析:注意留给学生自主探索的空间,让学生在原有的基础上进行知识的迁移类推,培养学生迁移、分析、推理的数学能力。
学生认知障碍点:学生对认知“找最小公倍数”的方法还停留在肤浅、模糊的状态,本节课的学习将为学生构建一个完整的知识体系。
教学目标:
1.知识目标:理解公倍数和最小公倍数的含义,会利用列举等方法找两个数的公倍数和最小公倍数。
2.过程和方法:结合具体情境,体会公倍数和最小公倍数的意义和应用,在原有的基础上比较类推,探索找最小公倍数的方法。
3.情感、态度、价值和目标:通过学习,让学生理解数学与生活的密切联系,培养学生热爱数学,热爱生活的情感,同时培养学生推理和抽象概括的能力。
教学重点:
掌握几个数的公倍数和最小公倍数的计算方法。
教学难点:
理解求最小公倍数的算理。
教学过程:
一、课堂导入
1.复习铺垫
(1)找出18和24的公因数。
(2)归纳整理找公因数的方法。
2.情境引入,进行找倍数活动。
出示题目:暑假其间,-每隔2天上网,苏老师每隔4天上网,7月31号 她们都同时上了网,8月份两个老师哪几天上网的?分别用不同的颜色圈出来。
2.让学生观察日历之后回答:-上网和苏老师同时上网的日子是( )。它们都是()和()共同的倍数,也就是它们的公倍数;其中最小的'公倍数是(),这也是它们的最小公倍数。
板书:最小公倍数
二、探讨新知
1.出示教材中的表格,让学生用符号标出4的倍数、6的倍数
问:既是4的倍数又是6的倍数有哪些?
根据我们刚学过的知识它们是4和6的( ),它们的最小公数是( ) 。
2.明确给出定义。
3.自主探索:找6和8的最小公倍数,总结找两个数的公倍数的方法
4.总结常用的求最小公倍数方法是:短除法
三、巩固提高
1.教材做一做
2.用短除法求下面每组数的最小公倍数
四、思维训练
16和24 5和8 18和36
有一袋果,3个3个分余1个,5个5个分还余1个,这袋果至少有多少个?
五、课堂总结
这节课你们有什么收获吗?
板书设计:
找最小公倍数
定义:几个数公有的倍数叫做它们的最小公倍数,其中最小的公倍数叫做这几个数的最小公倍数。
方法:1.列举法;2.短除法;3.分解质因数法
评价设计:
学生学习活动评价设计
1. 学生积极思考问题,给予表扬肯定。
2. 学生有比较类推的能力及时鼓励和加以培养。
3. 课堂中学生的闪光点要及时表扬,对典型的合作学习给予肯定性评价。
4. 学困生要适宜鼓励。
